АВТОМАТИЗИРОВАННЫЙ УЧЕТ НА ЭТАПЕ ВАРКИ ГЛАЗАМИ УЧАСТНИКОВ ПРОЦЕССА

В прошлой статье я рассказал, почему при наведении порядка на сыродельном производстве (в том числе при внедрении системы оперативного контроля и учета) стоит начинать с участка варки. А еще обещал показать, как выглядит разработанная нами система учета варки сыра и какую информацию из нее можно получить для анализа и эффективного управления производством.

Но пока я созревал к написанию этой статьи-продолжения – мои коллеги из группы разработки подготовили и опубликовали на нашем Ютуб-канале набор видеороликов, в которых наглядно и интерактивно продемонстрирована работа всех групп пользователей в системе. Поэтому с вашего разрешения я не буду утомлять вас писаниной с картинами, а направлю посмотреть своими глазами.


Единственное, о чем хочется с вами дополнительно поговорить – это

Ключевые отчеты по анализу результатов работы участка варки, которые представляет система:

1. Эффективности варки – позволяет проанализировать расход объема базисного сырья на выход сыра, преобразование жира и белка из сырья в сыр.

С помощью данного отчета вы можете проанализировать по каждой варке:

  • тот самый коэффициент конвертации сырья в сыр (показатель «Расход базисного молока»). Нужно отметить, что оперативный учет расхода сырья в системе ведется в физическом объеме и фактических показателях содержания жира и белка. Но для отчета система преобразует объем и показатели израсходованного сырья в базисные значения и позволяет анализировать конвертацию всех варок в единой отнормированной «системе координат»;
  • Коэффициент соотношения белка к жиру в смеси – один из важных показателей процесса варки сыра, определяющий, с одной стороны, качество и стоимость произведенного сыра, с другой – объем потерь в процессе варки;
  • Попадание профиля ключевых качественных показателей полученного сыра в диапазон целевых значений. Как я уже говорил ранее – анализ профиля сыра после варки позволяет достаточно точно спрогнозировать качество готового продукта. Так же стоит отметить, что в отчете состав показателей, включаемых в анализируемый профиль – можно настраивать индивидуально.

2. Анализ распределения значений показателей качества – позволяет наглядно увидеть статистику – как часто за выбранный период значение показателя качества (на примере – жир в сухом веществе) отклоняется от допустимых значений.

В приведенном примере мы видим, что жир в сухом веществе в большинстве варок попал в целевые значения 45-46%. Но при этом так же видно, что большой процент варок отклонились от целевого значения. Проанализировать таким образом можно любой показатель, который лаборатория учитывает в системе.

3. История показателя – график показывает, как анализируемый показатель менялся по датам и в какие даты выходил за целевой диапазон значений.


P.S.: В завершении хочется предложить вам заказать на нашем сайте бесплатную демонстрацию продукта, где вы сможете еще более детально изучить его функционал и примерить на свое предприятие.

Печать статьи

Отправить ответ

Оставьте первый комментарий!

avatar
  Подписаться  
Уведомлять о